Battery's State of Charge

Battery's State of Charge

State of charge, or conversely, the depth of discharge (DOD) can be determined by measuring the voltage and/or the specific gravity of the acid with a hydrometer. This will NOT tell you how good (capacity in AH) the battery condition is - only a sustained load test can do that. Voltage on a fully charged battery will read 2.12 to 2.15 volts per cell, or 12.7 volts for a 12 volt battery. At 50% the reading will be 2.03 VPC (Volts Per Cell), and at 0% will be 1.75 VPC or less. Specific gravity will be about 1.265 for a fully charged cell, and 1.13 or less for a totally discharged cell. This can vary with battery types and brands somewhat - when you buy new batteries you should charge them up and let them sit for a while, then take a reference measurement. Many batteries are sealed, and hydrometer reading cannot be taken, so you must rely on voltage. Hydrometer readings may not tell the whole story, as it takes a while for the acid to get mixed up in wet cells. If measured right after charging, you might see 1.27 at the top of the cell, even though it is much less at the bottom. This does not apply to gelled or AGM batteries.

Here are no-load typical voltages vs state of charge
(figured at 10.5 volts = fully discharged, and 77 degrees F). Voltages are for a 12 volt battery system. For 24 volt systems multiply by 2, for 48 volt system, multiply by 4. VPC is the volts per individual cell - if you measure more than a .2 volt difference between each cell, you need to equalize, or your batteries are going bad, or they may be sulfated. These voltages are for batteries that have been at rest for 3 hours or more. Batteries that are being charged will be higher - the voltages while under charge will not tell you anything, you have to let the battery sit for a while. For longest life, batteries should stay in the green zone. Occasional dips into the yellow are not harmful, but continual discharges to those levels will shorten battery life considerably. It is important to realize that voltage measurements are only approximate. The best determination is to measure the specific gravity, but in many batteries this is difficult or impossible. Note the large voltage drop in the last 10%.

State of Charge 12 Volt battery Volts per Cell
100% 12.7 2.12
90% 12.5 2.08
80% 12.42 2.07
70% 12.32 2.05
60% 12.20 2.03
50% 12.06 2.01
40% 11.9 1.98
30% 11.75 1.96
20% 11.58 1.93
10% 11.31 1.89
0 10.5 1.75

Back to top

"False" Battery's Capacity

A battery can meet all the tests for being at full charge, yet be much lower than it's original capacity. If plates are damaged, sulfated, or partially gone from long use, the battery may give the appearance of being fully charged, but in reality acts like a battery of much smaller size. This same thing can occur in gelled cells if they are overcharged and gaps or bubbles occur in the gel. What is left of the plates may be fully functional, but with only 20% of the plates left... Batteries usually go bad for other reasons before reaching this point, but it is something to be aware of if your batteries seem to test OK but lack capacity and go dead very quickly under load.

On the table below, you have to be careful that you are not just measuring the surface charge. To properly check the voltages, the battery should sit at rest for a few hours, or you should put a small load on it, such as a small automotive bulb, for a few minutes. The voltages below apply to ALL Lead-Acid batteries, except gelled. For gel cells, subtract .2 volts. Note that the voltages when actually charging will be quite different, so do not use these numbers for a battery that is under charge.

Contact Us at Webmaster@6pie.com

Privacy Statement

© 2015